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Transformed Density Rejection with Inflection Points

Carsten Botts - Wolfgang Hormann - Josef Leydold

Abstract The acceptance-rejection algorithm is often used
to sample from non-standard distributions. For this algo-
rithm to be efficient, however, the user has to create a hat
function that majorizes and closely matches the density of
the distribution to be sampled from. There are many meth-
ods for automatically creating such hat functions, but these
methods require that the user transforms the density so that
she knows the exact location of the transformed density’s
inflection points. In this paper, we propose an acceptance-
rejection algorithm which obviates this need and can thus
be used to sample from a larger class of distributions.

Keywords Nonuniform random variate generation -
transformed density rejection - inflection points
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1 Introduction

Sampling random variates from non-standard distributions
is a crucial part of Monte Carlo methods and stochastic sim-
ulation. Acceptance-rejection sampling is often used to gen-
erate values from non-standard distributions, but to execute
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this algorithm, the user has to find a multiple of some den-
sity function that majorizes f, the density of the distribution
to be sampled from. This majorizing function is referred to
as the hat function and is denoted as /. The user may also
want to find a squeeze function, s. The squeeze function is
majorized by f and is typically used to reduce the computa-
tional expense of the acceptance-rejection algorithm. Once
values of & and s have been found, to generate a value of X
from a distribution with density f, the following steps are
necessary:

1. Generate a random variate X with density proportional
to h.

Generate a (0, 1) uniform random number, U.

If Uh(X) < s(X), then return X.

IfUA(X) < f(X), then return X.

Otherwise, try again.

A e

Although executing the five steps above is simple, the
challenge in implementing acceptance-rejection sampling is
in finding appropriate values of / and s.

Devroye (1984) proposed a method to construct hat func-
tions when the distribution to be sampled from has a log-
concave density. Gilks and Wild (1992) partition the do-
main of the distribution into non-overlapping intervals and
use tangents and secants of the log-density to construct hat
and squeeze functions, respectively. This subdivision can be
refined with adaptive rejection sampling (ARS). In ARS,
the hat and squeeze functions “adapt” to the density to be
sampled from with every proposed value of X that is re-
jected. To be more specific, every time a proposed value of
X 1is rejected, the interval in which the rejected value lies
is split into two non-overlapping intervals at this point. Hat
and squeeze functions are then calculated for the density
within these two intervals. The area between hat and squeeze
functions thus tends to 0, and the marginal generation time
hardly depends on the target distribution.
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Hormann (1995) generalized this idea for the class of T'-
concave distributions. A density f is called T-concave if the
transformed density f =T o f is concave, where T': (0,0) —
R is a differentiable and monotonically increasing transfor-
mation. If f is T-concave, the tangent 7(x) = a + Bx to f
is greater than f for all x in the domain of f, making the
function ¢(x) = T~ [f(x)] = T~! (& + Bx) a hat function to
/- Similarly, if f is T-concave, the secant to the transformed
density, 7, can be used to construct the squeeze function, s,
for the density in a given interval. Evans and Swartz (1998)
show that the opposite applies (in that tangents are used to
construct the squeeze function and secants are used to con-
struct the hat function) when f is T-convex. Since hat and
squeeze functions can be constructed for densities that are
either T-concave or T-convex, hat and squeeze functions
can be constructed for any density as long as the user knows
exactly where the density is T-convex and T-concave. In
such cases, the domain of f should be split into intervals
such that within each interval, f is either entirely concave
or entirely convex. Separate hat and squeeze functions will
then be calculated within each interval, and the techniques
used to calculate these hat and squeeze functions will de-
pend, of course, on whether f is concave or convex within
the interval. Identifying these intervals, however, requires
identifying the inflection points of f, and this may not be
a trivial task.

Botts (2010) recently relaxed the requirement of know-
ing the exact position of these inflection points. He proposes
a method where the domain of the distribution is subdivided
into intervals where the transformed density is either con-
cave, convex, or has exactly one inflection point. For the
latter case, he introduces an additional transformation and
compiles a new sampling algorithm.

In this paper we propose a sampling algorithm that works
for all these intervals. Hat and squeeze functions are con-
structed by means of tangents and secants of the transformed
density, making the resulting acceptance-rejection algorithm
simple. The paper is organized as follows: In Section 2 we
derive the proposed sampling method. Section 3 compiles
the resulting algorithm, and in Section 4 we apply the method
to some examples.

2 The Proposed Method

For the algorithm proposed in this paper, the user does not
have to precisely identify the inflection points of the trans-
formed density, f (recall that this is required in transformed
density rejection). In the proposed algorithm, the user just
has to partition the domain of f into intervals in which the
transformed density is either entirely concave, entirely con-
vex, or has just one inflection point. Once these intervals
have been supplied by the user, we provide a method for

constructing the hat and squeeze functions. In Section 2.1

we give some conditions a density has to satisfy for the pro-
posed algorithm to apply. In Section 2.2 details are provided
on how the hat and squeeze functions are calculated for a
given partition. In Section 2.3, more details are given on how
the partition should be constructed, Section 2.5 discusses
how the density should be transformed, and in Section 2.6
we discuss some computational issues that should be noted
in the algorithm.

2.1 Conditions

The algorithm proposed in this paper can be used to sample
from any distribution with a density that satisfies the follow-
ing three conditions (note that these conditions are always
satisfied when the given density is twice continuously differ-
entiable and has only a finite number of inflection points).

Condition 1 Density f and thus f are continuous. Notice
that this is always the case for a concave or convex function
in some open interval.

Condition 2 f is continuously differentiable except in a fi-
nite number of points where all one-sided derivatives exist.
In abuse of language we set f'(x) = oo if f has a vertical
tangent like in /x at x = 0.

Condition 3 f is twice continuously differentiable except
in a finite number of points. These points must be inflection
points of £, that is, /" must change sign at such points. This
excludes transformed densities with cusp-like structure like
in |x| —x? at x = 0. We also assume that there is only a finite
number of points where f” = 0.

2.2 Constructing the hat and squeeze functions

We begin by assuming that the user has partitioned the do-
main of f, into mutually exclusive intervals. Within each in-
terval, f is either entirely concave, entirely convex, or con-
tains just one inflection point. In the cases where f is entirely
concave, tangents and secants to f are used to construct the
hat and squeeze functions, respectively, and when f is con-
vex, the opposite applies. In cases where f contains one in-
flection point, then we rely on the result in Theorem 1 to
construct a hat function.

Theorem 1 Let [b;,b,] be a closed interval where f has (at
most) one inflection point y € (b;,b,). Then (at least) one of
the following cases holds. (Note that the tangents of f at by
and b, are denoted by ) and t,, respectively, and the secant
between these two points by T.)
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(Ia) f is concave near by and ~ f,(x) < f(x) <f(x),

(Ib) f is convex near byand  #(x) < f(x) <7 (x),
(Illa) f is concave near by and  #(x) < f(x) <7(x),
(IIb) f is convex near by and — 7(x) < f(x) <i.(x),
(Illa) f is concave near by and  7,(x) < f(x) < #(x),
(IIIb) f is convex near by and — T(x) < f(x) < 7(x),
(IVa) f is concave on [by,b,| and #(x) < f(x) <in(x),

(IVb) f is convex on [by,b,] and 7, (x) < f(x) < #(x),
where T, is the tangent of f in b; or b, wherever f is larger.

Cases (la), (Ila), and (IITa) are illustrated in Figure 1.
Also note that Case (I'Va) is a special case of (Ila), and Case
(IVb) is a special case of (IIIb).

Proof Recall that all the functions 77, 7, and 7 are linear, and
that #(b;) = 7;(b;) = f(b;) and #(b,) = 7,(b,) = f(b,). As-
sume first that there is an inflection point y € (b;,b,) such
that f is concave on [b;,y] and thus convex on [y, b,]. Let 7,
be the secant between f(b;) and f(y). Then by concavity of
f we have 7(x) > f(x) > #,y(x) for all x € [b;,y]. Analo-
gously, we have 7.(x) < f(x) < Fyp, (x) for all x € [y, b,].

If7;(b,) > f(b,) and 7,(b;) < f(by), then f;(x) > 7,(x) and
we find by continuity of f that 7;(y) > 7,y (y) = iy, (v) =
F(y) and #(by) > Fyp, (by) = f(b,). Consequently, 7(x) >
Fyb, (x) > f(x) for all x € [y,b,] and hence 7 is an upper
bound for f on [b;,b,]. Analogously, 7, is a lower bound for
f . Thus we have case (Ia).

If 7(b,) > f(b,) and 7.(b;) > f(b;), then again #; is an
upper bound for f. However, 7; and 7, intersect. We now have
7(x) <.(x) < f(x) forall x € [y, b,] (by construction of 7 and
7). In particular this inequality holds in y and hence it also
implies that 7(x) < Fyp, (x) < f(x) for all x € [b;,y]. Thus we
have case (I1a).

If7;(b,) < f(b,) and 7, (b;) < f(b;), then we analogously
get case (I11a).

For the remaining case where #;(b,) < f(b,) and 7,(b;) >
F(b;) we have #(x) < f(x) < #(x) for all x € [b;,b,]. Thus
f is a linear function and we find 7;(x) = f(x) = 7,(x), a
contradiction.

If f is convex on [b;,y], then cases (Ib), (IIb), and (ITTb)
follows completely analogously.

If there is no inflection point, then f 1S concave or convex
in [by,b,], i.e., (IVa) and (IVD), respectively. Then we may
use any tangent with point of contact in [b;,b,]. The particu-
lar choice of tangents deserve some explanation. When £ is
concave and strictly monotone on some interval we always
use its maximum as construction point for the tangent as this
ensures a valid hat function for f, see Sect. 2.3 below. O

With the result in Theorem 2, it is simple to diagnose
which case in Theorem 1 holds.

Theorem 2 Let [b;,b,] be a closed interval where f has
at most one point y which is an inflection point or where

f'(y)=0. Let R = L) =700 pe ge slope of the secant of

Xr—X]|
f. Then the cases from Theorem 1 occur when the following
conditions are satisfied:

(Ia) if and only if f'(b;) > R and f'(b,) > R.
(Ib) if and only if (b)) <R and f'(b,) <R.

(Ila) when f"(b;) < 0 and f"(b,) > 0 and
Fbr)>R>F(br).

(IIb) when f"(b;) > 0 and f"(b,) <0 and
F'(br) =R > f'(by).

(Illa) when f"(b;) < 0 and f"(b,) > 0 and
') <R<J'(br).

(I1Ib) when f"(b;) > 0 and f"(b,) < 0 and
F(b)) <R<F(by).

(IVa) if and only if f"(b;) <0 and f"(b,) <O0.

(IVb) if and only if f"(b;) > 0 and f"(b,) > 0.

Proof Recall that 7#(b;) =1;(b;) = f(b;) and #(b,) =1,(b,) =
f(b,). Moreover, notice that 7;(b,) > f(b,) if and only if
f'(b;) > R. Similarly, 7.(b;) < f(b;) if and only if f'(b,) >
R. Thus using our considerations from the proof of Theo-
rem 1 the statements for cases (Ia) and (Ib) immediately fol-
low.

If we have f”(b;) < 0 and f”(b,) > 0, then f is concave
near b; and there is exactly one inflection point y € (b;,b;).
Moreover, f'(b;) > R > f'(b,) implies 7;(b,) > f(b,) and
71(b,) > f(b,) and hence we have case (Ila) by the arguments
from the proof of Theorem 1. The statements for cases (IIb),
(IlTa) and (I1Ib) follow analogously.

At last (IVa) implies f”(b;) < 0 and f”(b,) < 0. On
the other hand if these two inequalities hold then at least
one most be strict because there is at most one point y with
f"(y) = 0. Moreover, f”(y) = 0 cannot change sign and thus
f"(x) >0 for all x € [b;,b,], i.e., f is concave and we have
case (I'Va). Similarly, the statement for case (IVb) follows.

O

2.3 Partitioning the domain of f

In this subsection, we give more details on how the do-
main of f should be partitioned. The proposed algorithm
initially requires that the user splits the domain of f into
non-overlapping intervals and that if the domain of f is un-
bounded, then in the left and/or right-most intervals, f =
T o f should be concave and strictly monotone. We formally
state this in the following condition.

Condition 4 Let by < by < ... <b,_1 < b, be the breaking
points of a partition of the domain of density f. Then the
following must hold:

— In each bounded interval [b;,b;;1] of the partition, there
is at most one inflection point of the transformed density
f, or one point where f” vanishes.
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by b, by

Fig. 1 Cases (Ia), (Ila), and (Illa) from Theorem 1

— In each unbounded interval (—oo, by] or [b,_1,0), f must
be concave and strictly monotone.

Some remarks regarding this condition include

Remark 1 By Conditions 1-3 we always can find a partition
that satisfies Condition 4. The monotonicity condition for
concave f on an unbounded interval can be easily checked
by f'(b,) > 0 and f'(b;) < 0, respectively. These assump-
tions allow us to apply Theorem 2 for distinguishing be-
tween the cases from Theorem 1.

Remark 2 The second part of Condition 4 (f must be con-
cave on unbounded intervals) is not crucial for the develop-
ment of the theory. For f(x) = |x| — log|x| we can construct
a hat function on [b,) using the linear function 7(x) =
F(b)+ B (x—b) where B = lim,_,.. f'(t). However, for prac-
tical reasons we excluded this case.

Once the initial partition of f’s domain has been entered,
it will be used to partition the domain into even more inter-
vals. The more intervals the domain of f is divided into, the
closer the hat and squeeze functions become, and the closer

area below hat

= ey
area below squeeze

gets to 1. As p approaches 1, the expected number of iter-

ations until a point is accepted also tends to 1, making the

algorithm more efficient.

Gilks and Wild (1992) accomplish this for log-concave
distributions using adaptive rejection sampling (ARS). In
ARS, the hat function for a log-concave density is initially
constructed by considering two points in the domain of f
(each point on either side of a mode, if a mode exists), cal-
culating the tangents to the log-density at these two points,
and then “connecting” these tangents at their point of inter-
section. The point where these two tangents intersect divides
the domain of f into two intervals. The domain of f is di-
vided into more intervals when a candidate value of X is
rejected. When this happens, the tangent to the log-density

is calculated at this point, a new hat function is created by
connecting this tangent line to the tangent lines adjacent to
it, and the points where this tangent intersects the adjacent
tangent lines are the boundaries of the new interval created.
This procedure is repeated for every candidate value of X
rejected.

ARS is a very powerful tool when only a few (or just
one) random variate has to be drawn from a particular dis-
tribution. It does not clearly distinguish between the setup
and generation part, however. ARS therefore introduces ad-
ditional complexity into the resulting algorithm when many
variates are drawn from the same distribution. Leydold et al
(2002) thus proposed derandomized adaptive rejection sam-
pling (DARS). In DARS, after the initial decomposition has
been established, one splits all intervals where the area be-
tween hat and squeeze is above some threshold value which
is just the average over all intervals of the current decom-
position. This procedure is repeated until the ratio p is as
small as requested. The splitting points can be computed by
the “arc-mean” of the boundaries of interval (b;_1,b;):

parc = tan (% (arctan(b;_) +arctan(;))) 2)

where arctan(=eo) is set to £7/2, see also Hérmann et al
(2004, Sect. 4.4.6).

2.4 Starting Intervals

The algorithm proposed in this paper requires that the user
initially splits the domain of f into three types of intervals:
those intervals in which f is entirely concave, those inter-
vals in which £ is entirely convex, and those intervals in
which f contains one inflection point. These intervals can
be obtained just by examining a plot of f”. In those intervals
where f” is entirely negative, f is concave; in those inter-
vals where f” is entirely positive, f is convex, and in those
intervals where there exists some x such that f”/(x) = 0, f
contains an inflection point. This technique of identifying
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the initial intervals assumes, of course, that the user has cor-

rectly identified the number of f’s inflection points, i.e., that b b,

the user sees how many times f” is 0. If we were to do away A, = / h(x)dx = T (a+ B(x—x0))dx

with this assumption, we would have to employ a method b b 3)

similar to that of Botts (2010), in which the user ascertains
(after the sample has been collected) that the correct number
of inflection points have been identified.

2.5 Appropriate Transformations

We restrict our interest to the family of 7, transformations
proposed by Hormann (1995), see Table 1. With this family
of transformations, generating candidate values of X with
density proportional to 4 can be done by means of the in-
version method. To generate values of X using the inversion
method, all one needs is the anti-derivative of Tc’l, Fr, and
its inverse, F ! These are easy to compute for this family
of transformations and are given for all values of ¢ in Ta-
ble 1. With this family of transformations, it is also simple to
decrease the number of inflection points in the transformed
density, f. Hormann et al (2004) observe that when a den-
sity is T, -concave in some interval (b;,b,), then it is also
T.-concave for every ¢ < ¢,. Decreasing ¢ may thus decrease
the number of inflection points in f. In the following para-
graph, more details are given on how the value of ¢ should
be selected.

For densities with unbounded domain, ¢ > —1 is required,
since otherwise the hat function has an unbounded integral.
For unbounded densities, ¢ must be sufficiently small to get
rid of poles in the transformed scale, but ¢ should still be
greater than —1 to get an integrable hat function. It is often
preferred to set c = —1/2, as this is in some sense equivalent
to the ratio-of-uniforms method (see Leydold 2000) and thus
leads to very fast marginal generation times. Setting ¢ = 0
(setting T = log) may also be preferred, since working with
log-densities makes computing less susceptible to numerical
overflow or underflow.

2.6 Computational Issues

We begin by writing the hat function for f as
h=a+B(x—xo),

where x is always the boundary point of the interval (b;,b,)
where f obtains its maximum. When the tangent serves as
the hat function to f, & = f(x9) and B = f (xo), and when
the secant serves as the hat function to f, a = f(xo) and
B = (f(by)— f(b1))/ (b —b;). The area below the hat then
becomes

= 5 lFr(o+B,

and the (non-normalized) CDF, H (x), of the density propor-
tional to & becomes

—x0)) — Fr(o+ B (b —x0))],

H(x) = /axrl(aﬂa(r —x0))dt

1
=3 [Fr(e+B(x—x0)) — Fr(a+B(a—x))] -
Notice that H(b,) = Aj. Thus the inverse H ! (u) for u €
[0,A,] is then given by

H ' (u) :onr% [F ' (BU + Fr(a+B(a—x))) —a] .
In our extensive numerical experiments, we observed prob-
lems when xj is very close to a local maximum or another
point where f’(xo) ~ 0. To be more specific, we observed
the situation where cancellation errors resulted in only two
remaining digits for o and 3 and consequently in an invalid
“hat” function. The resulting random sample then showed
large defects.

For ¢ = 0 we can avoid these problem in the following
way. Let

Z:{ﬁwf—m»
—B (b, —by),

Then a straightforward computation gives

if xo = by,
if xg = b,.

_ L atBb—x) _ atBlbi—x)
A= B (e e )

1
— (b, ~ 1) (e~ 1) @

z 2

~ f()co)(br - bl) <1 + 5 + 6) 3
where the last approximation follows from Taylor’s theorem
and is accurate up to machine precision (which is 275 ~
2.2-10719) for |z] < 107°. Table 2 lists transformations and
approximations for other values of parameter c. And for the
two most important values of ¢, Table 3 lists the inverse
functions H ! (1) and their approximations.

When ¢ # 0 there might be a problem when using tan-
gents to construct hat or squeeze functions. From Table 1
we can see that 7 cannot be transformed back into a valid hat
or squeeze function when 7 vanishes inside the correspond-
ing interval, that is, when there is a point x € [b;,b,] where
f(x) = 0. (By construction this cannot happen for secants.)
If such a problem arises and prevents the construction of
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Table 1 The family 7. of transformations. F; denotes the antiderivative of 7,

¢ T. L(x)  T7'x)  Fri) Fr ' (x)
S0 (0) 5 (0m) ¥ Al e ()Y
0 (0,00) > R log(x) €* e log(x)
<0 (O (—,0) —xf (mlfe —p(mx)lerle (—etly /e
S22 (0) > (—e,0) —1/yE 1/ —1/x —1/x
1 (0e) (=00 —1/x  —l/x  —log(~x) —exp(—%)
Table 2 Area below hat function and its approximation for small values of f’ (x0). (6 =1 forxg = b; and 6 = —1 for xo = b,)
c Ap Approximation zZ
1 flxo)(by—b)3(2+2) o L(b.—b)
0 f(xo)(by—b1) (e~ 1) feo)br—=b) (145+%)  olb—b)
—1/2 flxo)(br—b)i= Fxo)(br—by) (1—z+2%) ol(b,—b)
—1 f(x0)(br —by) tlog(1 +2) fo)(br =bi) (1= 32+32%) o g(br—br)
otherwise £ (x0)(by — by) =< %[(1 4 g)(ern)/e 1} oL (b, — b))
Table 3 Inverse CDF of “hat distribution” and its approximation for small values of f’(xo)
¢ H ' (u) Approximation z
1 2 B
0 bty lee(42) bt ey (1-5+5) (@ BB —50))

—1/2  bi+u(a+B(b —x0))? 1

by+u(a+B(by—x0))- (14+z+22)

Bu(a+B(br —xo))

a valid squeeze function in (b;,b,), the algorithm will pro-
ceed without a squeeze function in (b;, b,). If such a problem
arises and prevents the construction of a valid hat function,
however, the interval (b;,b,) will be split into smaller inter-
vals (using the “arc-mean” method described in Section 2.4)
until a valid hat function is obtained.

3 The Algorithm

Now we can compile an algorithm that is based on Theo-
rems 1 and 2. Table 4 presents Algorithm Tinflex-1log that
implements case of 7' = log. Notice that Step 14 can be ex-
ecuted in constant time (i.e., independent of the number of
intervals) by means of the alias method or the guide table
method (see, e.g., Hormann et al 2004, Sect. 3).

It is obvious that this algorithm can easily be generalized
for arbitrary transformations 7, by using the formula from
Tables 2 and 3. However, for ¢ < 0 one must check whether
a tangent results in a valid (bounded) hat function. Other-
wise, we have to split the corresponding interval. This can
be easily implemented by setting the area in such intervals
to Ap; = oo.

In Condition 4 we have demanded that f must be con-
cave and strictly monotone in each unbounded interval (—oo, b1 ]
or [b,_1,%0) of the given starting partition. In practice it is
only necessary that intervals (—oo,b,| and [b;,o0) with this
property exist and that there is at most one inflection point
of f in the given starting intervals for (—co,by] or [b,_1,).
If [b,_1,0) contains an inflection point, then it is not possi-
ble to construct a hat function according to our rules. Thus
Apn—1 is set to oo. Then the logic of DARS will split that
interval in the next cycle. This splitting is repeated until a
point satisfying Condition 4 is found.

Remark 3 Notice that Algorithm Tinflex-log as well as
its generalization works for any multiple of a density f. Thus
there is no necessity to compute a normalization constant.

Remark 4 1t is obvious that we can replace DARS (Steps 7—
12) by ARS. For this purpose we have to add appropriate
steps in the generation part after a candidate point X has
been rejected.

We have coded a proof-of-concept implementation of
Algorithm Tinflex-1log using the R programming language
for statistical computing (R Development Core Team 2010).
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Table 4 Algorithm Tinflex-log

Input: Log-density f with domain (b;,b,) and its deriva-
tives f' and f” that satisfy Conditions 1-3;
partition b; = by < by < ... < b,_1 < b, = b, that satis-
fies Condition 4;
maximal accepted value for Ppax.
Output: Random variate X with density f.
> Setup: Initial intervals
1: fori=0,...ndo
2. Compute f(b;), f'(b;), and f"(b;).
3: for all intervals [b;, b, 1] do
4:  Determine type of interval using Theorem 2.
5:  Determine x¢ and compute intercepts o and slopes 8
of hat /1; and squeeze §; using Theorem 1.
6:  Compute area Aj;; below hat and area Ay; below
squeeze using formula from Table 2.
> Setup: Derandomized adaptive rejection sampling
7: repeat
8: Aj ZA;,_’,' and Ay < ZAS,,'.
. A« (A, —Ay)/(#intervals).
10:  for all intervals with (4;; —A,;) > A do
11: Split interval using “arc-mean” (2) and compute
hat, squeeze and areas for the two new intervals.
12: until A, /A5 < Prmax
> Generation

13: loop

14:  Generate J with probability vector proportional to
(An1,An2,.-.).

15:  Generate X with density prop. to i using formula
from Table 3.

16:  Generate U ~ U(0,1).
17. if UR(X) < s(X) then

D> evaluate squeeze

18: return X.
19:  ifUR(X) <exp(f(X)) then > evaluate density
20: return X.

We also provide a ready-to-use version of the most gen-
eral algorithm with R package Tinflex which is available
at the CRAN. An advantage of the proposed algorithm is
that the intervals can be treated independently from each
other, i.e., virtually we have a mixture of distribution on
mutually disjoint domains. Thus it allows (mostly) arbitrary
values of ¢ which may differ on different intervals of the
starting partition. Moreover, points that violate Condition 3
may be used as partition points. Thus the routine can han-
dle densities with cusps (although these have been excluded
by Condition 3 for our theoretical considerations). Conse-
quently it also can handle (to some extend) densities with
poles.

Both implementations, Tinflex-1log.R and R package
Tinflex, are also available as online supplement to this pa-
per and demonstrate the usefulness of this method.

4 Examples

In this section we demonstrate in three examples the useful-
ness of the proposed method.

4.1 A Simple Example

We start with a simple example. Assume that we have to
draw a sample from a distribution with density proportional
to

f(x) =exp (—|x|a + s|x|P —|—Sx2) , a>B>2s5€>0.
The second derivative of the log-density is then
F'(0) = —ala— D2 +sB(B—1)lxP 2 +2e.

Observe that f(0) = 2& > 0 and lim, ., f"" = —oo. More-
over, f(x) < 0 implies that

alo—1)|x|* 2> sB(B—1)|xP2+2e.

Consequently, if x > 0 and f”(x) < 0 then we find for the
third derivative at x,

7109 =22 |afa- e+ LEZDE=D
<222 lspp-1) (1-E22 ) e 22

<0

Hence if xg is the smallest root of f” with xo > 0, then f” is
strictly decreasing in [xo,c0). Consequently xj is the unique
inflection point in [0,00) and f is log-concave in the tail.
By symmetry the same holds for x € (—eo,0]. Hence we can
run Algorithm Tinflex-log with starting partition points
{—e0,0,0} for drawing a sample from this distribution.

4.2 Exponential Power Distribution

For the second example we consider the family of exponen-
tial power distributions (EP) with density proportional to
fer(x) =exp(~[x|"), & >0.
It is a generalization of the normal distribution where o = 2.
For o > 1 the density is log-concave. For o < 1, however, it
is strongly log-convex near the mode x = 0.

In the framework of transformed density rejection, the
notion of the local concavity of a density f at a point x is a
very convenient tool to analyze a given distribution (Hérmann
et al 2004, Sect. 4.3). It is defined as the maximal value for ¢
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such that the transformed density f(x) = (T, o f)(x) is con-
cave near x. For a twice differentiable density f it is given
by

A density f is T.-concave at x if and only if lcs(x) > c.
Moreover, f = T, o f has an inflection point in x if and only
iflep(x) =c.

For the exponential power distribution we find

a—1
ICEP(X,(X) = T |x|_a .

Since the distribution is symmetric, it is enough to consider
positive values of x. Recall that we consider the case where
o < 1. When x approaches 0 then Icgp(x) diverges to —oo,
and for increasing x it is strictly monotonically increasing

with limit 0. Therefore we cannot apply transformation 7'(x) =

log(x), i.e., ¢ = 0. However, for any fixed value of ¢ < 0 the
transformed density has exactly one inflection point in do-
main (0,o0), and it is T,-concave for sufficiently large x. We
therefore can apply the generalized algorithm with ¢ = —1/2
for the truncated exponential power distribution on [0, o)
with starting partition points {0,}. Note that when exe-
cuting our algorithm to generate from an EP distribution
with a < 1, the first derivative of the log-density must re-
turn the right derivative at x = 0. We analogously generate
from the truncated exponential power distribution on the do-
main (—ee, 0], and in this case the first derivative of the log-
density must return the left derivative. Drawing a random
sample from the exponential power distribution using the
proposed algorithm is thus simple; we merely combine the
samples generated for the two truncated distributions.

A simpler approach, however, would be to implement
the first derivative of the log-density such that it returns 0O
for the mode at x = 0. Then for a narrow interval [0, €] the
transformed density is classified as case (Ia) by the rules of
Theorem 1. The algorithm then creates a valid constant hat
using the pseudo-tangent at x = 0, and a valid squeeze using
the tangent at x = €. This interval has to be chosen such that
there is no (real) inflection points of f. A suitable choice
is € = (1 — a)/2. We also have to take care that fgp forms
a cusp when o < 1. We thus must use x = 0 as partition
point. We can therefore apply the generalized algorithm with
¢ = —1/2 for the exponential power distribution using ¢ =
—1/2 and starting partition points {—o, —(1 —)/2,0, (1 —
o) /2,00}.

We ran our code for values of o between 0.015 and 0.99.
In all cases routine Tinflex had no problem to construct a
hat function with ppax = 1.1. The resulting ratios p = Aj, /A
were always less than 1.1. The observed numbers of inter-
vals were 15 for ¢ = 0.99, increased to 88 for o¢ = 0.1 and
was almost 1000 for o« = 0.015. (For @ < 0.015 the routine

did not work due to numeric overflow and other limitations
of floating point arithmetic.)

4.3 Generalized Gaussian Distribution

As our third example we consider the generalized inverse
Gaussian Distribution (GIG). For the purpose of random
variate generation, we only need to consider the two param-
eter family with density proportional to

fGIG(x;l,a)):x}“_lexp (C; <x+l)> , x>0
X

and A and o positive (see Devroye 1986). Its local concavity
is given by

4x(w+ (A —1)x)
(0+2(A—1)x—wx?)"

ICG]G(X,A,O)) =

The GIG distribution (as defined above) is log-concave for
A>landT J2-concave for @ > 0.5. We thus only consider
the cases where A < 1 and © < 0.5.

When A, @ < 1 itis no problem to see that forx < @/(1—
A),lcgic > 0 and hence fg)¢ is log-concave. The first deriva-
tive of the local concavity is given by

20— 1) + 30 + @
(0x2=2(A—1)x—w)*

IC/G]G(XA, (0) =—4w

It numerator is a multiple of the cubic polynomial
g(x) =2(A - 1)’ + 30’ + @ .

For x > /(1 — A) the local concavity thus has a single local
minimum and converges to 0 when x tends to c. Notice that
the numerator ¢(x) has exactly one real root. Consequently,
for ¢ = —1/2 the transformed density has exactly two inflec-
tion points if the minimum value of Icg;¢ is less than —0.5.
Thus we have to add at least one point in the region where
Icgig < —0.5 to the set of starting partition points as this
guarantees that there is at most one inflection point in each
starting interval.

In practice it is enough to check that at least for one start-
ing point the second derivative of the transformed density is
negative. It is also possible to find the approximate location
of the minimum of Icg;g by finding the (approximate) loca-
tion of the real root r( of ¢(x) using numeric search starting
atx = /(1 —A). The mode of the distribution,

m= (A—1+ (A—l)2+w2>/w;

may also be used as a convenient partition point. We can
therefore apply the generalized algorithm for the GIG distri-

bution using ¢ = —1/2 and starting partition points {0, 7, rgp,eo}.

Of course it is important that the log-density logo fg; and
its derivative are carefully implemented for x = 0.
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We ran our code for values of A between 0.01 and 0.9

and for values of @ in the set {10715, 10714, ..., 1072,
0.1, 0.2, 0.3, 0.4, 0.5} In all cases routine Tinflex had
no problem to construct a hat function for ¢ = —1/2 with

Pmax = 1.1. The resulting ratios p = A; /A were always less
than 1.1. The observed numbers of intervals were 10-13 for
® > 0.1 and increased to 100—120 for o = 10715,

Notice that for parameters A = 0.4 and @ = 107 the
most popular generation method for GIG variables by Dag-
punar (1989) which is based on the ratio-of-uniforms method
with a bounding rectangle is extremely slow due to its huge
rejection constant of about 8500. For values of @ less than
10~% all implementations of this generator known to the au-
thors fail (or produces an invalid sample).

The above approach has the drawback that we need the
approximate location ry of the real root of g(x). An alterna-
tive approach avoids this step by using two different trans-
formation 7. Notice that the cubic g(x) —® = 2(A — 1)x* +
3wx? has a root at x) = %% It is not difficult to show that
q(x) is concave for x > xo. We can therefore use the root
rn=3:2+ %% of the tangent g(xo) + ¢'(xo)(x — x0) as
an upper bound for the location of the minimum of Icg;g(x).
We can therefore apply the generalized algorithm with ¢ =0
on the interval [0,r] and with ¢ = —1/2 on the interval
[r1,°0). Again routine Tinflex had no problem to construct
a hat function with pp,x = 1.1. However, as we have more
intervals where the transformed density is log-convex we
need (up to 60%) more intervals.

5 Conclusions

The algorithm presented in this paper is a user-friendly adap-
tive acceptance-rejection algorithm. It is user-friendly in the
sense that hat and squeeze functions of f are constructed
without the user having to know the exact location of the
inflection points of the transformed density. The only input
required from the user is the transformation 7" and the in-
tervals in the domain of f where the transformed density is
either entirely concave, entirely convex, or contains only one
inflection point. Areas of future research include how to op-
timally select these initial intervals for a given density, and
how to generalize this algorithm so that it can be applied to
densities that do not necessarily satisfy conditions 1-3.
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